Farmer John正在一个新的销售区域对他的牛奶销售方案进行调查。他想把牛奶送到T个城镇 (1 <= T <= 25,000),编号为1T。这些城镇之间通过R条道路 (1 <= R <= 50,000,编号为1到R) 和P条航线 (1 <= P <= 50,000,编号为1到P) 连接。每条道路i或者航线i连接城镇A_i (1 <= A_i <= T)到B_i (1 <= B_i <= T),花费为C_i。对于道路,0 <= C_i <= 10,000;然而航线的花费很神奇,花费C_i可能是负数(-10,000 <= C_i <= 10,000)。道路是双向的,可以从A_i到B_i,也可以从B_i到A_i,花费都是C_i。然而航线与之不同,只可以从A_i到B_i。事实上,由于最近恐怖主义太嚣张,为了社会和谐,出台了一些政策保证:如果有一条航线可以从A_i到B_i,那么保证不可能通过一些道路和航线从B_i回到A_i。由于FJ的奶牛世界公认十分给力,他需要运送奶牛到每一个城镇。他想找到从发送中心城镇S(1 <= S <= T) 把奶牛送到每个城镇的最便宜的方案,或者知道这是不可能的。
6 3 3 4 1 2 5 3 4 5 5 6 10 3 5 -100 4 6 -100 1 3 -10 样例输入解释: 一共六个城镇。在1-2,3-4,5-6之间有道路,花费分别是5,5,10。同时有三条航线:3->5, 4->6和1->3,花费分别是-100,-100,-10。FJ的中心城镇在城镇4。
NO PATH NO PATH 5 0 -95 -100 样例输出解释: FJ的奶牛从4号城镇开始,可以通过道路到达3号城镇。然后他们会通过航线达到5和6号城镇。 但是不可能到达1和2号城镇。