【故事背景】 JYY很喜欢打保龄球,虽然技术不高,但是还是总想着的高分。这里JYY 将向你介绍他所参加的特殊保龄球比赛的规则,然后请你帮他得到尽量多的分数。 【问题描述】 一场保龄球比赛一共有N个轮次,每一轮都会有10个木瓶放置在木板道的 另一端。每一轮中,选手都有两次投球的机会来尝试击倒全部的10个木瓶。对于每一次投球机会,选手投球的得分等于这一次投球所击倒的木瓶数量。选手每一轮的得分是他两次机会击倒全部木瓶的数量。 对于每一个轮次,有如下三种情况: 1、“全中”:如果选手第一次尝试就击倒了全部10个木瓶,那么这一轮就称 为“全中”。在一个“全中”轮中,由于所有木瓶在第一次尝试中都已经被击倒,所以选手不需要再进行第二次投球尝试。同时,在计算总分时,选手在下一轮的得分将会被乘2计入总分。 2、“补中”:如果选手使用两次尝试击倒了10个木瓶,那么这一轮就称为“补中”。同时,在计算总分时,选手在下一轮中的第一次尝试的得分将会被乘以2计入总分。 3、“失误”:如果选手未能通过两次尝试击倒全部的木瓶,那么这一轮就被称为“失误”。同时,在计算总分时,选手在下一轮的得分会被计入总分,没有分数被翻倍。此外,如果第N轮是“全中”,那么选手可以进行一次附加轮:也就是,如果第N轮是“全中”,那么选手将一共进行N+1轮比赛。显然,在这种情况下,第N+1轮的分数一定会被加倍。 附加轮的规则只执行一次。也就是说,即使第N+1轮选手又打出了“全中”,也不会进行第N+2轮比赛。因而,附加轮的成绩不会使得其他轮的分数翻番。最后,选手的总得分就是附加轮规则执行过,并且分数按上述规则加倍后的每一轮分数之和。 JYY刚刚进行了一场N个轮次的保龄球比赛,但是,JYY非常不满意他的 得分。JYY想出了一个办法:他可以把记分表上,他所打出的所有轮次的顺序重新排列,这样重新排列之后,由于翻倍规则的存在,JYY就可以得到更高的分数了!当然了,JYY不希望做的太假,他希望保证重新排列之后,所需要进行的轮数和重排前所进行的轮数是一致的:比如如果重排前JYY在第N轮打出了“全中”,那么重排之后,第N轮还得是“全中”以保证比赛一共进行N+1轮;同样的,如果JYY第N轮没有打出“全中”,那么重排过后第N轮也不能是全中。请你帮助JYY计算一下,他可以得到的最高的分数。
第一行包含一个整数N,表示保龄球比赛所需要进行的轮数。 接下来包含N或者N+1行,第i行包含两个非负整数Xi和Yi,表示JYY在 这一轮两次投球尝试所得到的分数,Xi表示第一次尝试,Yi表示第二次尝试。 我们用表示一个“全中”轮。输入数据保证。 读入数据存在N+1行,当且仅当Xn=10且Yn=10。
输出一行一个整数,表示JYY最大可能得到的分数。
2 5 2 10 0 3 7
44
【样例说明】
按照输入顺序,JYY将得到37分。
最佳方案是将3个轮次排列成如下顺序:
3 7
10 0
5 2
N<=50