Z国坐落于遥远而又神奇的东方半岛上,在小Z的统治时代公路成为这里主要的交通手段。Z国共有n座城市,一 些城市之间由双向的公路所连接。非常神奇的是Z国的每个城市所处的经度都不相同,并且最多只和一个位于它东 边的城市直接通过公路相连。Z国的首都是Z国政治经济文化旅游的中心,每天都有成千上万的人从Z国的其他城市 涌向首都。为了使Z国的交通更加便利顺畅,小Z决定在Z国的公路系统中确定若干条规划路线,将其中的公路全部 改建为铁路。我们定义每条规划路线为一个长度大于1的城市序列,每个城市在该序列中最多出现一次,序列中相 邻的城市之间由公路直接相连(待改建为铁路)。并且,每个城市最多只能出现在一条规划路线中,也就是说,任意 两条规划路线不能有公共部分。当然在一般情况下是不可能将所有的公路修建为铁路的,因此从有些城市出发去往 首都依然需要通过乘坐长途汽车,而长途汽车只往返于公路连接的相邻的城市之间,因此从某个城市出发可能需要 不断地换乘长途汽车和火车才能到达首都。我们定义一个城市的“不便利值”为从它出发到首都需要乘坐的长途汽 车的次数,而Z国的交通系统的“不便利值”为所有城市的不便利值的最大值,很明显首都的“不便利值”为0。小 Z想知道如何确定规划路线修建铁路使得Z国的交通系统的“不便利值”最小,以及有多少种不同的规划路线的选择 方案使得“不便利值”达到最小。当然方案总数可能非常大,小Z只关心这个天文数字modQ后的值。注意:规划路 线1-2-3和规划路线3-2-1是等价的,即将一条规划路线翻转依然认为是等价的。两个方案不同当且仅当其中一个方 案中存在一条规划路线不属于另一个方案。
第一行包含三个正整数N、M、Q,其中N表示城市个数,M表示公路总数,N个城市从1~N编号,其中编号为1的是首都 。Q表示上文提到的设计路线的方法总数的模数。接下来M行,每行两个不同的正数ai、bi(1≤ai,bi≤N)表示有一条 公路连接城市ai和城市bi。输入数据保证一条公路只出现一次。
包含两行。第一行为一个整数,表示最小的“不便利值”。第二行为一个整数,表示使“不便利值”达到最小时 不同的设计路线的方法总数modQ的值。如果某个城市无法到达首都,则输出两行-1。
5 4 100 1 2 4 5 1 3 4 1
1 10
以下样例中是10种设计路线的方法:
(1)4-5
(2)1-4-5
(3)4-5,1-2
(4)4-5,1-3
(5)4-5,2-1-3
(6)2-1-4-5
(7)3-1-4-5
(8)1-4
(9)2-1-4
(10)3-1-4
【数据规模和约定】
对于100%的数据,满足1≤N,M≤100000,1≤Q≤120000000。