渐渐地,Magic Land上的人们对那座岛屿上的各种现象有了深入的了解。 为了分析一种奇特的称为梦想封印(Fantasy Seal)的特技,需要引入如下的概念: 每一位魔法的使用者都有一个“魔法脉络”,它决定了可以使用的魔法的种类。 一般地,一个“魔法脉络”可以看作一个无向图,有N个结点及M条边,将结点编号为1~N,其中有一个结点是特殊的,称为核心(Kernel),记作1号结点。每一条边有一个固有(即生成之后再也不会发生变化的)权值,是一个不超过U的自然数。 每一次魔法驱动,可看作是由核心(Kernel)出发的一条有限长的道路(Walk),可以经过一条边多次,所驱动的魔法类型由以下方式给出: 将经过的每一条边的权值异或(xor)起来,得到s。 如果s是0,则驱动失败,否则将驱动编号为s的魔法(每一个正整数编号对应了唯一一个魔法)。 需要注意的是,如果经过了一条边多次,则每一次都要计入s中。 这样,魔法脉络决定了可使用魔法的类型,当然,由于魔法与其编号之间的关系尚未得到很好的认知,此时人们仅仅关注可使用魔法的种类数。 梦想封印可以看作是对“魔法脉络”的破坏: 该特技作用的结果是,“魔法脉络”中的一些边逐次地消失。 我们记总共消失了Q条边,按顺序依次为Dis1、Dis2、……、DisQ。 给定了以上信息,你要计算的是梦想封印作用过程中的效果,这可以用Q+1个自然数来描述: Ans0为初始时可以使用魔法的数量。 Ans1为Dis1被破坏(即边被删去)后可以使用魔法的数量。 Ans2为Dis1及Dis2均被破坏后可使用魔法的数量。 …… AnsQ为Dis1、Dis2、……、DisQ全部被破坏后可以使用魔法的数量。
第一行包含三个正整数N、M、Q。 接下来的M行,每行包含3个整数,Ai、Bi、Wi,表示一条权为Wi的与结点Ai、Bi关联的无向边,其中Wi是不超过U的自然数。 接下来Q行,每行一个整数:Disi。
一共包Q+1行,依次为Ans0、Ans1、……、AnsQ。
【输入样例1】 3 3 2 1 2 1 2 3 2 3 1 4 1 3 【输入样例2】 5 7 7 1 2 1 1 3 1 2 4 2 2 5 2 4 5 4 5 3 9 4 3 1 7 6 5 4 3 2 1
【输出样例1】 5 2 0 【样例1解释】 初始时可使用编号为1、3、4、6、7的魔法。 在删去第1条边(连结1、2结点的边)后,可使用4和6号魔法。 第3条边(连结第1、3结点的边)也被删去后,核心(Kernel)即结点1孤立,易知此时无法使用魔法。 【输出样例2】 15 11 5 2 2 1 1 0
【数据规模和约定】
所有数据保证该无向图不含重边、自环。
所有数据保证不会有一条边被删除多次,即对于不同i和j,有Disi≠Disj
30%的数据中N ≤ 50,M ≤ 50,Q ≤50,U≤100;
60%的数据中N ≤ 300,M ≤ 300,Q ≤50,U≤10^9;
80%的数据中N ≤ 300,M ≤ 5000,Q ≤5000,U≤10^18;
100%的数据中N ≤ 5000,M ≤ 20000,Q ≤20000,U≤10^18;