3130 - [Sdoi2013]费用流

Alice和Bob在图论课程上学习了最大流和最小费用最大流的相关知识。

最大流问题:给定一张有向图表示运输网络,一个源点S和一个汇点T,每条边都有最大流量。一个合法的网络流方案必须满足:(1)每条边的实际流量都不超过其最大流量且非负;(2)除了源点S和汇点T之外,对于其余所有点,都满足该点总流入流量等于该点总流出流量;而S点的净流出流量等于T点的净流入流量,这个值也即该网络流方案的总运输量。最大流问题就是对于给定的运输网络,求总运输量最大的网络流方案。

上图表示了一个最大流问题。对于每条边,右边的数代表该边的最大流量,左边的数代表在最优解中,该边的实际流量。需要注意到,一个最大流问题的解可能不是唯一的。 对于一张给定的运输网络,Alice先确定一个最大流,如果有多种解,Alice可以任选一种;之后Bob在每条边上分配单位花费(单位花费必须是非负实数),要求所有边的单位花费之和等于P。总费用等于每一条边的实际流量乘以该边的单位花费。需要注意到,Bob在分配单位花费之前,已经知道Alice所给出的最大流方案。现茌Alice希望总费用尽量小,而Bob希望总费用尽量大。我们想知道,如果两个人都执行最优策略,最大流的值和总费用分别为多少。

Input

第一行三个整数N,M,P。N表示给定运输网络中节点的数量,M表示有向边的数量,P的含义见问题描述部分。为了简化问题,我们假设源点S是点1,汇点T是点N。
接下来M行,每行三个整数A,B,C,表示有一条从点A到点B的有向边,其最大流量是C。

Output

第一行一个整数,表示最大流的值。 第二行一个实数,表示总费用。建议选手输出四位以上小数。

Examples

Input

3 2 1
1 2 10
2 3 15

Output

10
10.0000

Hint

【样例说明】

对于Alice,最大流的方案是固定的。两条边的实际流量都为10。

对于Bob,给第一条边分配0.5的费用,第二条边分配0.5的费用。总费用

为:100.5+100.5=10。可以证明不存在总费用更大的分配方案。

【数据规模和约定】

对于20%的测试数据:所有有向边的最大流量都是1。

对于100%的测试数据:N < = 100,M < = 1000。

对于l00%的测试数据:所有点的编号在I..N范围内。1 < = 每条边的最大流

量 < = 50000。1 < = P < = 10。给定运输网络中不会有起点和终点相同的边。

Time Limit 1 second
Memory Limit 128 MB
Stats
上一题 下一题