【背景】 坑校准备鼓励学生参加学习小组。 【描述】
共有n个学生,m个学习小组,每个学生有一定的喜好,只愿意参加其中的一些学习小组,但是校领导为学生考虑,规定一个学生最多参加k个学习小组。财务处的大叔就没那么好了,他想尽量多收钱,因为每个学生参加学习小组都要交一定的手续费,不同的学习小组有不同的手续费。然而,事与愿违,校领导又决定对学习小组组织者进行奖励,若有a个学生参加第i个学习小组,那么给这个学习小组组织者奖励Ci*a^2元。在参与学生(而不是每个学习小组的人数总和)尽量多的情况下,求财务处最少要支出多少钱(若为负数,则输出负数)(支出=总奖励费-总手续费)。
输入有若干行,第一行有三个用空格隔开的正整数n、m、k。接下来的一行有m个正整数,表示每个Ci。第三行有m个正整数,表示参加每个学习小组需要交的手续费Fi。再接下来有一个n行m列的矩阵,表若第i行j列的数字是1,则表示第i个学生愿意参加第j个学习小组,若为0,则为不愿意。
输出只有一个整数,为最小的支出。
3 3 1 1 2 3 3 2 1 111 111 111
-2 【样例解释】 参与学生最多为3,每个学生参加一个学习小组,若有两个学生参加第一个学习小组,一个学生参加第二个学习小组(一定要有人参加第二个学习小组),支出为-2,可以证明没有更优的方案了。 【数据范围与约定】 100%的数据,0<n≤100,0<m≤90,0<k≤m,0<Ci≤10,0<Fi≤100。