二维平面上有n个点(xi, yi),现在这些点中取若干点构成一个集合S,对它们按照x坐标排序,顺次连接,将会构成一些连续上升、下降的折线,设其数量为f(S)。如下图中,1->2,2->3,3->5,5->6(数字为下图中从左到右的点编号),将折线分为了4部分,每部分连续上升、下降。
现给定k,求满足f(S) = k的S集合个数。
第一行两个整数n和k,以下n行每行两个数(xi, yi)表示第i个点的坐标。所有点的坐标值都在[1, 100000]内,且不存在两个点,x坐标值相等或y坐标值相等
输出满足要求的方案总数 mod 100007的结果
5 1 5 5 3 2 4 4 2 3 1 1
19
对于100%的数据,n <= 50000,0 < k <= 10